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Abstract 
 

High performance computing is one of the most 
interesting topic in modern research. General 
Purpose Graphic Processing Units (GPGPU) is 
widely used to accelerate compute-intensive 
workloads, however limited main memory bandwidth 
remains a critical issue. In many workloads, huge 
fraction of GPU running time is spent for copying 
data from main memory. Based on this point, we 
propose in-memory GPU architecture to improve 
overall performance through scheduling GPU 
operations. 
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1. Introduction 
 

Recently, memory wall crisis is emerging problem 
on high performance computing system. Accordingly, 
Processing in Memory (PIM) is expected to be the 
viable solution for the problem. There have been 
many studies investigating PIM, some research focus 
PIM on main memory, and some others investigate on 
storage level [1] or graphics memory [2]. PIM 
methodologies provides highly utilized memory 
bandwidth so that the host processor would be able to 
allocate its resources for higher priority tasks. 

In this paper, we propose in-memory GPU 
architecture to optimize GPU operation time. Our goal 
in this work is to investigate how much the GPU 
performance can be improved through processing in 
memory. 
 
2. Motivation 
 

Figure 1 shows proportions of GPU kernel time 
and memory copy latency in various workloads. 
Basically to run GPU kernel, its required data need to 
be stored in graphics memory. After the kernel 
operation ends, the data may remain on the GPU and 
only the resulting part would be moved from graphics 
memory to main memory. 

In some workloads, however, the host processor 
constantly checks the status of whole data, and may 
need to use the data in real time process, for example 
big-data management. In this cases, transferring data 
between main memory and graphics memory may be 
critical on the overall system performance. Therefore, 
reducing the memory transfer duration by processing 
GPU kernels in main memory is reasonable in such 
cases. 
 

 
Figure 1. Proportions of GPU operations 

 
3. in-Memory GPU Architecture 
 

Our proposed architecture has two GPU models, 
one is conventional GPGPU model and the other is In-
Memory GPU (IMGPU) which is directly connected 
to main memory. In our system, the main memory is 
used as graphics memory for IMGPU. The overall 
block diagram is shown in following figure 2. 

 

 
Figure 2. Block diagram for IMGPU architecture 
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The number of cores of baseline GPGPU is set to 
32. For IMGPU, Pattnaik et al. [2] considered thermal 
feasibility for their PIM based GPU scheduling. 
According to their study, we configured the number 
of cores in the IMGPU to four, in order to assume 
even worse conditions. 

Since profiling GPU kernel or memory operations 
have been well researched in many previous works, 
we assume that we know the running time of each 
kernel operation before executing. The main idea for 
scheduling GPU operation is represented in figure 3. 
If the sum of kernel time and the sum of durations for 
kernel dependent memory copy is greater than the 
kernel time on PIM, the kernel is scheduled to PIM. 

 

 
Figure 3. Concept diagram for the proposed GPU 

scheduling scheme 
 
4. Experiment 
 

We used gem5-gpu [3], which is cycle-accurate 
full system simulator. The simulator contains CPU, 
GPU and memory models. The following table 
provides our simulating GPU resource configurations 
for overall architecture. 

 
Table 1: Simulator configurations 

GPGPU 32 shader cores, 1.4GHz clock rate, 
32 SIMT width 

IMGPU 4 shader cores, 1.4GHz clock rate, 32 
SIMT width 

Core 
Resources 

1536 threads, 48KB shared memory, 
32K registers, Maxwell architecture 

Caches 64KB 4way L1 I/D cache, 1MB L2 
cache, 128B block size 

 
Gem5-gpu provides Ruby cache hierarchy for 

memory model, and only one DRAM model is shared 
between the CPU and the GPU. In this work, we 
assume that main memory and GPU memory use the 
same type of DRAM, in this case, DDR3. Therefore, 
difference on the kernel time in two GPU system 
depends on configurations for computing resource. In 
future studies, we plan to evaluate our architecture 
with various types of DRAM configurations such as 
GDDR5 and HBM (High Bandwidth Memory). 

We chose Rodinia benchmark suite [4] to evaluate 
our architecture. The Rodinia is designed for high 
performance computing system with NVIDIA CUDA 
implementation. Workloads were selected as having 
various characteristics. 

 

 
Figure 4. Normalized speedup for each workloads 

 
Figure 4 shows the experiment results performed 

in each two GPU models. It contains speedups on total 
execution time and the only kernel time of GPU 
operations. Each result of conventional GPGPU 
system is fixed at one, and the following shows 
amount of increment of system performance with our 
architecture in the corresponding workload. 

The first two workloads, backprop and pathfinder 
are ideal cases which spend most of the running time 
as memory copy, therefore using PIM is advantageous 
even if it takes longer to run kernel operation. 

Gaussian is a typical failure case for our proposed 
architecture, which is compute-intensive benchmark 
that most of the running time is kernel time. In hotspot 
benchmark, on the other hand, it also failed even 
though its proportion of memory copy is almost same 
as backprop or pathfinder. In this case, performance 
degradation of kernel operation was more critical than 
the advantage on memory issue. 

In case of srad and bfs, kernel time was measured 
to be the same or rather low, which shows GPU 
scalability does not guarantee linear performance 
improvements due to low utilization of cores as in the 
study of [5]. Pattnaik et al. [2] has also conducted PIM 
study within GPU memory with these characteristics. 
 
5. Conclusion 
 

In this paper, we proposed in-memory GPU 
architecture to improve overall GPU performance. To 
overcome memory wall crisis, our PIM method 
schedules GPU kernels to run in two separate GPUs, 
conventional GPGPU and our in-memory GPU. 
According to our experiments with Rodinia CUDA 
benchmarks, GPU operations can be improved with 
average 1.7 times speedup on the ideal condition. We 
will further investigate our method in practical 
conditions with dynamic profiling of GPU operations 
and various types of DRAM models. 
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