
Overcoming Memory Bottleneck with Near-Data GPU Acceleration

Hanjae Lee, Eui-Young Chung
Department of Electrical and Electronic Engineering, Yonsei University

50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
E-mail: tmxk37@dtl.yonsei.ac.kr, eychung@yonsei.ac.kr

Abstract

High performance computing is one of the most
interesting topic in modern research. General
Purpose Graphic Processing Units (GPGPU) is
widely used to accelerate compute-intensive
workloads, however limited main memory bandwidth
remains a critical issue. In many workloads, huge
fraction of GPU running time is spent for copying
data from main memory. Based on this point, we
propose in-memory GPU architecture to improve
overall performance through scheduling GPU
operations.

Keywords: Processing In Memory, General Purpose
Graphic Processing Unit, Memory Bandwidth.

1. Introduction

Recently, memory wall crisis is emerging problem
on high performance computing system. Accordingly,
Processing in Memory (PIM) is expected to be the
viable solution for the problem. There have been
many studies investigating PIM, some research focus
PIM on main memory, and some others investigate on
storage level [1] or graphics memory [2]. PIM
methodologies provides highly utilized memory
bandwidth so that the host processor would be able to
allocate its resources for higher priority tasks.

In this paper, we propose in-memory GPU
architecture to optimize GPU operation time. Our goal
in this work is to investigate how much the GPU
performance can be improved through processing in
memory.

2. Motivation

Figure 1 shows proportions of GPU kernel time
and memory copy latency in various workloads.
Basically to run GPU kernel, its required data need to
be stored in graphics memory. After the kernel
operation ends, the data may remain on the GPU and
only the resulting part would be moved from graphics
memory to main memory.

In some workloads, however, the host processor
constantly checks the status of whole data, and may
need to use the data in real time process, for example
big-data management. In this cases, transferring data
between main memory and graphics memory may be
critical on the overall system performance. Therefore,
reducing the memory transfer duration by processing
GPU kernels in main memory is reasonable in such
cases.

Figure 1. Proportions of GPU operations

3. in-Memory GPU Architecture

Our proposed architecture has two GPU models,
one is conventional GPGPU model and the other is In-
Memory GPU (IMGPU) which is directly connected
to main memory. In our system, the main memory is
used as graphics memory for IMGPU. The overall
block diagram is shown in following figure 2.

Figure 2. Block diagram for IMGPU architecture

0%

20%

40%

60%

80%

100%

backprop pathfinder srad bfs hotspot gaussian Average

Pr
op

or
tio

n

Kernel Execution Memory Copy

The number of cores of baseline GPGPU is set to
32. For IMGPU, Pattnaik et al. [2] considered thermal
feasibility for their PIM based GPU scheduling.
According to their study, we configured the number
of cores in the IMGPU to four, in order to assume
even worse conditions.

Since profiling GPU kernel or memory operations
have been well researched in many previous works,
we assume that we know the running time of each
kernel operation before executing. The main idea for
scheduling GPU operation is represented in figure 3.
If the sum of kernel time and the sum of durations for
kernel dependent memory copy is greater than the
kernel time on PIM, the kernel is scheduled to PIM.

Figure 3. Concept diagram for the proposed GPU

scheduling scheme

4. Experiment

We used gem5-gpu [3], which is cycle-accurate
full system simulator. The simulator contains CPU,
GPU and memory models. The following table
provides our simulating GPU resource configurations
for overall architecture.

Table 1: Simulator configurations

GPGPU 32 shader cores, 1.4GHz clock rate,
32 SIMT width

IMGPU 4 shader cores, 1.4GHz clock rate, 32
SIMT width

Core
Resources

1536 threads, 48KB shared memory,
32K registers, Maxwell architecture

Caches 64KB 4way L1 I/D cache, 1MB L2
cache, 128B block size

Gem5-gpu provides Ruby cache hierarchy for

memory model, and only one DRAM model is shared
between the CPU and the GPU. In this work, we
assume that main memory and GPU memory use the
same type of DRAM, in this case, DDR3. Therefore,
difference on the kernel time in two GPU system
depends on configurations for computing resource. In
future studies, we plan to evaluate our architecture
with various types of DRAM configurations such as
GDDR5 and HBM (High Bandwidth Memory).

We chose Rodinia benchmark suite [4] to evaluate
our architecture. The Rodinia is designed for high
performance computing system with NVIDIA CUDA
implementation. Workloads were selected as having
various characteristics.

Figure 4. Normalized speedup for each workloads

Figure 4 shows the experiment results performed

in each two GPU models. It contains speedups on total
execution time and the only kernel time of GPU
operations. Each result of conventional GPGPU
system is fixed at one, and the following shows
amount of increment of system performance with our
architecture in the corresponding workload.

The first two workloads, backprop and pathfinder
are ideal cases which spend most of the running time
as memory copy, therefore using PIM is advantageous
even if it takes longer to run kernel operation.

Gaussian is a typical failure case for our proposed
architecture, which is compute-intensive benchmark
that most of the running time is kernel time. In hotspot
benchmark, on the other hand, it also failed even
though its proportion of memory copy is almost same
as backprop or pathfinder. In this case, performance
degradation of kernel operation was more critical than
the advantage on memory issue.

In case of srad and bfs, kernel time was measured
to be the same or rather low, which shows GPU
scalability does not guarantee linear performance
improvements due to low utilization of cores as in the
study of [5]. Pattnaik et al. [2] has also conducted PIM
study within GPU memory with these characteristics.

5. Conclusion

In this paper, we proposed in-memory GPU
architecture to improve overall GPU performance. To
overcome memory wall crisis, our PIM method
schedules GPU kernels to run in two separate GPUs,
conventional GPGPU and our in-memory GPU.
According to our experiments with Rodinia CUDA
benchmarks, GPU operations can be improved with
average 1.7 times speedup on the ideal condition. We
will further investigate our method in practical
conditions with dynamic profiling of GPU operations
and various types of DRAM models.

0

0.5

1

1.5

2

2.5

3

backprop pathfinder srad bfs hotspot gaussian Average

N
or

m
al

iz
ed

 S
pe

ed
up

Total-GPGPU Total-IMGPU Kernel-GPGPU Kernel-IMGPU

Acknowledgement

This work was supported by the ICT R&D program of
MSIP/IITP. [2016(R7177-16-0233), Development of
Application Program Optimization Tools for High
Performance Computing Systems]

References

[1] B Gu, et al., “Biscuit: A Framework for Near-Data
Processing of Big Data Workloads”, ACM/IEEE
International Symposium on Computer Architecture (ISCA),
pp 153-165, Jun 2016.

[2] A Pattnaik, et al., “Scheduling Techniques for GPU
Architectures with Processing-In-Memory Capabilities”,
International Conference on Parallel Architecture and
Compilation Techniques (PACT), pp 32-44, Sep 2016.

[3] J Power, et al., “gem5-gpu: A Heterogeneous CPU-GPU
Simulator,” IEEE Computer Architecture Letters, pp 34-36,
Jan 2014.

[4] S. Che, et al., Rodinia: A Benchmark Suite for
Heterogeneous Computing. In Proceedings of the IEEE
International Symposium on Workload Characterization
(IISWC), pp. 44-54, Oct. 2009.

[5] K Choi, et al., “Study of GPU Scalability”, IEEE
International Symposium on Consumer Electronics (ISCE),
Jun 2014

